CONTENTS

I	Page
CONTENTS	IX
LIST OF TABLES	XIII
LIST OF FIGURES	XV
CHAPTER I Introduction	1
1.1 Rationale and background	1
1.2 Thesis objectives	4
1.3 Research scope	5
CHAPTER II Literature review	6
2.1 Substrates used	6
2.1.1 Skim latex serum	6
2.1.1.1 Compositions of non-rubber materials in the serum	6
2.1.1.1.1 Carbohydrates	6
2.1.1.1.2 Proteins	7
2.1.1.1.3 Lipids and phospholipids	7
2.1.2 Palm oil mill effluent	9
2.2 The biogas process	12
2.2.1 Hydrolysis	13
2.2.2 Acidogenesis	14
2.2.3 Acetogenesis	14
2.2.4 Methanogenesis	14
2.3 Two-stage anaerobic digestion process	15
2.4 Factors affecting the stability of the biogas production by dark fermentation	16
2.4.1 Substrate	16
2.4.2 Nutrients	16
2.4.3 Operating conditions	17

CONT

CONTENTS (Continued)		
	Page	
2.4.3.1 Temperature	17	
2.4.3.2 pH and buffers	17	
2.4.3.3 Organic loading rate	18	
2.4.3.4 Hydraulic retention time	18	
2.4.4 Toxic/inhibiting compounds	18	
CHAPTER III Hydrogen and methane production by using batch two-stage	21	
co-digestion of skim latex serum (SLS) and palm oil mill		
effluent (POME): Optimization of mixing ratio and nutrients		
3.1 Abstract	21	
3.2 Introduction	22	
3.3 Materials and methods	23	
3.3.1 Anaerobic seed sludge	23	
3.3.2 Skim latex serum	24	
3.3.3 Palm oil mill effluent	24	
3.3.4 Empty fruit bunch (EER) ash	24	

3.3.4 Empty fruit bunch (EFB) ash	24
3.3.5 Optimization of SLS and POME mixing ratio in biohydrogen	25
production	
3.3.6 Effect of NaHCO ₃ , Na ₂ HPO ₄ .12H ₂ O and EFB ash	25
concentrations on biohydrogen production	
3.3.7 Methane potential from co-digestion of SLS with POME	27
3.3.8 Analytical methods	28
3.4 Results and discussion	28
3.4.1 Characteristics of substrates used	28
3.4.2 Optimization of SLS and POME mixing ratio in biohydrogen	29

Production

CONTENTS (Continued)

	Page
3.4.3 Effect of NaHCO ₃ , Na ₂ HPO ₄ .12H ₂ O and EFB ash concentrations	33
on biohydrogen production	
3.4.4 Soluble metabolite products and COD balance	36
3.4.5 Methane potential of co-fermentation of SLS and POME	44
3.5 Conclusions	46
CHAPTER IV Thermophilic dark co-digestion of skim latex serum (SLS) and	47
palm oil mill effluent (POME) to sequentially produce hydrogen	
and methane	
4.1 Abstract	47
4.2 Introduction	48
4.3 Materials and methods	49
4.3.1 Inoculum preparation	49
4.3.2 Skim latex serum	50
4.3.3 Palm oil mill effluent	50
4.3.4 Experimental set-up and operation	51
4.3.5 Analytical methods	53
4.4 Results and discussion	53
4.4.1 H ₂ -CSTR experiments	53
4.4.2 CH ₄ -UASB experiments	58
4.4.3 Energy achieved from two-stage co-digestion of SLS with POME	61
4.5 Conclusions	62
CHAPTER V Conclusions	63
5.1 Summary	63
5.2 Suggestions	64
REFERENCES	65

CONTENTS (Continued)

	Page
APPENDICES	72
VITAE	83

LIST OF TABLES

	Page
Table 2.1 Physical and chemical characteristics of skim latex serum	8
Table 2.2 Physical and chemical characteristics of palm oil mill effluent	9
Table 2.3 Hydrogen and methane production from anaerobic digestion	10
of POME under mesophilic and thermophilic conditions	
Table 3.1 Physical and chemical characteristics of skim latex serum and	29
palm oil mill effluent	
Table 3.2 Experimental variables and concentration levels investigated by using central composite design Table 3.3 Central composite experimental design matrix defining NaHCOa	26 27
Na. HPO, 12H.O and EEB ash concentrations on hydrogen production yield	21
Na211F 04.121120 and EFB ash concentrations on hydrogen production yield	
Table 3.4 Analysis of variance (ANOVA) for the regression modelTable 3.5 Model coefficients estimated by multiples linear regression	35 35
(significance of regression coefficients), where $X_1 = NaHCO_3$ concentration (g/L	L),
$X_2 = Na_2HPO_4.12H_2O$ concentration (mg/L) and $X_3 = EFB$ ash concentration (g/I	Ĺ)
Table 3.6 pH and results on hydrogen production yield achieved from buffer and macro-	36
nutrient optimization stage.	
Table 3.7 Soluble metabolites obtained from different mixing ratio of SLS to POME	39
with initial organic loading of 7 g-VS _{added} /L	
Table 3.8 Soluble metabolites obtained from different mixing ratio of SLS to POME	41
with initial organic loading of 21 g-VS _{added} /L	
Table 3.9 Soluble metabolite products and COD balance obtained from different	43
mixing ratio of SLS to POME with initial organic loading of 7 g-VS _{added} /L	
at the end of fermentation	
Table 3.10 Soluble metabolite products achieved from methane production in	45
batch experiment	

LIST OF TABLES (Continued)

	Page
Table 4.1 Physical and chemical characteristics of the skim latex serum and palm oil mill	51
effluent used	

LIST OF FIGURES

Page

Figure 1.1 Schematic diagram of research plan for hydrogen and methane production from co-digestion of skim latex serum and palm oil mill effluent under thermophilic condition	5
Figure 2.1 Process involved in concentration of natural latex using centrifugation method	8
Figure 2.2 Process involved in milling of oil palm	12
Figure 2.3 Carbon flow diagram of the biogas process	13
Figure 2.4 Flow diagram of two-stage anaerobic process	15
Figure 3.1 Cumulative hydrogen achieved from different mixing ratio of SLS and	32
POME with initial organic loading of 7 g-VS _{added} /L	
Figure 3.2 Cumulative hydrogen achieved from different mixing ratio of SLS and	32
POME with initial organic loading of 21 g-VS _{added} /L	
Figure 3.3 Hydrogen production yield achieved from different mixing ratio of SLS	33
and POME with initial organic loading of 7 g-VS _{added} /L and 21 g-VS _{added} /L,	
respectively	
Figure 3.4 Soluble metabolites obtained from different mixing ratio of SLS to POME	38
with initial organic loading of 7 g-VS _{added} /L	
Figure 3.5 Soluble metabolites obtained from different mixing ratio of SLS to POME	41
with initial organic loading of 21 g-VS _{added} /L	
Figure 3.6 Cumulative methane production achieved from the sequential methane	44
production in batch experiment	
Figure 3.7 Methane production yield achieved from the sequential methane production	45
in batch experiment	
Figure 4.1 Schematic description of lab-scale bioreactor operation for sequential production	52
of biohydrogen and biomethane which operated under thermophilic temperature	

LIST OF FIGURES (Continued)

Page Figure 4.2 Variation of pH in H₂-CSTR reactor which was operated at different HRTs 56 under thermophilic temperatures; [1] HRT of 2.25 days and OLR of 20 g-VS/L d, [2,4] HRT of 4.50 days and OLR of 10 g-VS/L d, and [3] HRT of 4.50 days and OLR of 5 g-VS/L d Figure 4.3 Variation of hydrogen content in biogas at different HRTs achieved from 56 H2-CSTR reactor; [1] HRT of 2.25 days and OLR of 20 g-VS/L d, [2,4] HRT of 4.50 days and OLR of 10 g-VS/L d, and [3] HRT of 4.50 days and OLR of 5 g-VS/L d 57 Figure 4.4 H₂-CSTR reactor performance achieved from co-digestion of SLS to POME at different HRTs under thermophilic temperatures; [1] HRT of 2.25 days and OLR of 20 g-VS/L d, [2,4] HRT of 4.50 days and OLR of 10 g-VS/L d, and [3] HRT of 4.50 days and OLR of 5 g-VS/L d Figure 4.5 Variation of soluble metabolite products achieved from H₂-CSTR reactor 57 at different HRTs under thermophilic temperatures; [1] HRT of 2.25 days and OLR of 20 g-VS/L d, [2,4] HRT of 4.50 days and OLR of 10 g-VS/L d, and [3] HRT of 4.50 days and OLR of 5 g-VS/L d Figure 4.6 Variation of methane and carbon dioxide content achieved from CH₄-UASB 59 reactor at different HRTs under thermophilic temperatures; [1, 4] BA medium + sucrose 2 g/L, [2] (BA medium + sucrose 2 g/L) + effluent H₂ at 1:1 (%v/v), [3, 5, 7] BA medium + Effluent H₂ and [6] Effluent H₂ + NaHCO₃ 2 g/L Figure 4.7 Variation of soluble metabolite products achieved from CH₄-UASB reactor 60 at different HRTs under thermophilic temperatures; [1, 4] BA medium + sucrose 2 g/L, [2] (BA medium + sucrose 2 g/L) + effluent H₂ at 1:1 (%v/v), [3, 5, 7] BA medium + Effluent H₂ and [6] Effluent H₂ + NaHCO₃ 2 g/L

LIST OF FIGURES (Continued)

Page

61

60 Figure 4.8 Variation of methane production rate and methane production yield achieved from CH₄-UASB reactor at different HRTs under thermophilic temperatures; [1, 4] BA medium + sucrose 2 g/L, [2] (BA medium + sucrose 2 g/L) + effluent H₂ at 1:1 (%v/v), [3, 5, 7] BA medium + Effluent H₂ and [6] Effluent H₂ + NaHCO₃ 2 g/L

Figure 4.9 Variation of pH in CH₄-UASB reactor which was operated at different HRTs under thermophilic temperatures; [1, 4] BA medium + sucrose 2 g/L, [2] (BA medium + sucrose 2 g/L) + effluent H₂ at 1:1 (%v/v), Luent H2 + NaHC

[3, 5, 7] BA medium + Effluent H₂ and [6] Effluent H₂ + NaHCO₃ 2 g/L